Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex.

نویسندگان

  • Aaditya V Rangan
  • David Cai
  • David W McLaughlin
چکیده

Our large-scale computational model of the primary visual cortex that incorporates orientation-specific, long-range couplings with slow NMDA conductances operates in a fluctuating dynamic state of intermittent desuppression (IDS), which captures the behavior of coherent spontaneous cortical activity, as revealed by in vivo optical imaging based on voltage-sensitive dyes. Here, we address the functional significance of the IDS cortical operating points by investigating our model cortex response to the Hikosaka line-motion illusion (LMI) stimulus-a cue of a quickly flashed stationary square followed a few milliseconds later by a stationary bar. As revealed by voltage-sensitive dye imaging, there is an intriguing similarity between the cortical spatiotemporal activity in response to (i) the Hikosaka LMI stimulus and (ii) a small moving square. This similarity is believed to be associated with the preattentive illusory motion perception. Our numerical cortex produces similar spatiotemporal patterns in response to the two stimuli above, which are both in very good agreement with experimental results. The essential network mechanisms underpinning the LMI phenomenon in our model are (i) the spatiotemporal structure of the LMI input as sculpted by the lateral geniculate nucleus, (ii) a priming effect of the long-range NMDA-type cortical coupling, and (iii) the NMDA conductance-voltage correlation manifested in the IDS state. This mechanism in our model cortex, in turn, suggests a physiological underpinning for the LMI-associated patterns in the visual cortex of anaesthetized cat.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

An fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli

  ABSTRACT  Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF).  Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd.  Results: Average percentage BOLD signa...

متن کامل

Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage.

Unlike first order motion, which is based on spatiotemporal variations in luminance, second-order motion relies on spatiotemporal variation of attributes derived from luminance, such as contrast. Here we show that a patient with a small unilateral cortical lesion adjacent to human cortical area MT (V5) has an apparently permanent disorder in perceiving several forms of second-order but not firs...

متن کامل

Stimulus Localization by Neuronal Populations in Early Visual Cortex: Linking Functional Architecture to Perception

U.J. Ilg and G.S. Masson (eds.), Dynamics of Visual Motion Processing: Neuronal, Behavioral, and Computational Approaches, DOI 10.1007/978-1-4419-0781-3_5, © Springer Science+Business Media, LLC 2010 Abstract In primary visual areas any local input is initially transmitted via horizontal connections giving rise to a transient peak of activity with spreading surround. How does this scenario chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 52  شماره 

صفحات  -

تاریخ انتشار 2005